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Abstract

Pneumococcal macrolide resistance is usually expressed as one of two phenotypes: the M 

phenotype conferred by the mef gene or the MLSB phenotype caused by modification of 

ribosomal targets, most commonly mediated by an erm methylase. Target-site modification 

leading to antibiotic resistance can also occur due to sequence mutations within the 23S rRNA or 

the L4 and L22 riboproteins. We screened 4,535 invasive isolates resistant to erythromycin and 18 

invasive isolates nonsusceptible to quinupristin–dalfopristin (Q-D) to deduce the potential 

mechanisms involved. Of 4,535 erythromycin-resistant isolates, 66.2% were polymerase chain 

reaction (PCR)-positive for mef alone, 17.8% for ermB alone, and 15.1% for both mef and ermB. 

Thirty-seven isolates (0.9%) were PCR negative for both determinants. Of these, 3 were positive 

for ermA (subclass ermTR) and 25 had chromosomal mutations. No chromosomal mutations (in 

23S rRNA, rplD, or rplV) nor any of the macrolides/lincosamides/streptogramin (MLS) resistance 

genes screened for (ermT, ermA, cfr, lsaC, and vgaA) were found in the remaining nine isolates. 

Of 18 Q-D nonsusceptible isolates, 14 had chromosomal mutations and one carried both mef and 

ermB; no chromosomal mutations or other resistance genes were found in 3 isolates. Overall, we 

found 28 mutations, 13 of which have not been previously described in Streptococcus 
pneumoniae. The role of these mutations remains to be confirmed by transformation assays.

Introduction

Streptococcus pneumoniae is a major cause of morbidity and mortality worldwide, 

particularly in young children and elderly persons. The most important pneumococcal 

infections include pneumococcal pneumonia, meningitis, and bacteremia/septicemia, 

because of their high global disease burden, high case fatality rates, and associated costs.7 

The introduction of the 7-valent vaccine in February of 2000 (PCV7, Prevnar; Wyeth 
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Pharmaceuticals) had a major effect on the incidence of pneumococcal disease. By the end 

of 2001, the rate of invasive pneumococcal disease (IPD) among US children younger than 

two years had decreased by 69%.8,53 Additionally, since five of the seven serotypes in PCV7 

(6B, 9V, 14, 19F, and 23F) were responsible for most antibiotic-resistant infections in the 

United States, the overall rate of disease caused by penicillin-nonsusceptible pneumococcal 

strains decreased by 57% from 1999 to 2004.32 However, the proportion of erythromycin-

resistant invasive isolates increased from 20.5% during 1999 to 24.9% during 2009.1

Pneumococcal macrolide resistance is usually expressed as one of two phenotypes: the M 

phenotype or the MLSB phenotype. M phenotype isolates are moderately resistant to 14- and 

15-membered macrolides, due to the mef-encoded efflux mechanism, and susceptible to 

clindamycin.46 MLSB phenotype isolates are resistant to macrolides (with generally higher 

minimum inhibitory concentrations [MICs]), lincosamides (clindamycin), and streptogramin 

B, as a result of the modification of ribosomal targets, most commonly mediated by an erm 
methylase52; ermB is the predominant methylase found in S. pneumoniae, but ermA has also 

been reported.4,34,48 Both erm and mef genes are carried on mobile genetic elements.

While the ermB genotype is the most prevalent mechanism worldwide, occurring in 55% of 

all erythromycin-resistant S. pneumoniae isolates globally, the predominant mechanism of 

pneumococcal macrolide resistance in the United States was until recently mediated by the 

mefA gene. A study conducted in 1999, before the introduction of PCV7, found that the M 

phenotype accounted for 82% of erythromycin-resistant isolates. Most of these isolates were 

PCV7 types, which were most commonly associated with children younger than 5 years.26 

After the introduction of PCV7, the proportion of mef in the United States steadily 

decreased, while the prevalence of macrolide-resistant strains carrying both ermB and mefA 

genes has increased.15,18,19,20,21,27,28

Macrolide resistance has also been frequently reported to occur due to substitutions in the 

23S rRNA and in the L4 and L22 riboproteins.6,25,49,50,54,56 Efflux mechanisms encoded by 

other genes such as vga and lsa have also been associated with macrolides/lincosamides/

streptogramin (MLS) resistance in other species, and the multidrug resistance gene cfr, 
encoding a 23S rRNA methyltransferase, was recently identified for the first time in 

streptococci.51

To determine the molecular mechanisms involved, we screened a large number of 

erythromycin and/or clindamycin-resistant isolates and all quinupristin–dalfopristin (Q-D) 

nonsusceptible isolates, submitted to the Active Bacterial Core Surveillance (ABCs) (part of 

the Centers for Disease Control and Prevention’s [CDC] Emerging Infections Program: 

http://www.cdc.gov/abcs/index.html), from participating sites pre- (1999) and post-PCV7 

introduction (2002–2007). In this report, we describe previously unreported ribosomal 

changes associated with pneumococcal resistance to macrolides and related antibiotics.
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Materials and Methods

Bacterial strains and antimicrobial susceptibility testing

Twenty-six thousand nine hundred seventy-four invasive S. pneumoniae isolates were 

submitted to ABCs from participating sites (www.cdc.gov/abcs/methodology/surv-pop.html) 

pre- (1999) and post- (2002–2007) introduction of PCV7. Isolates were serotyped by latex 

agglutination and the Quellung reaction. MICs to erythromycin, clindamycin, and Q-D were 

determined by the broth microdilution method. Antibiotic resistance was determined based 

on the Clinical and Laboratory Standards Institute (CLSI) breakpoints: for erythromycin and 

clindamycin, isolates with MIC ≥ 1 μg/ ml were classified as resistant, and for Q-D, isolates 

with MIC ≥ 2 μg/ml were classified as nonsusceptible.9,11 Inducible clindamycin resistance 

was determined by the D-zone disk diffusion test10,11 and broth microdilution using an 

erythromycin–clindamycin (ERY-CLD) combination well. Four thousand five hundred 

thirty-five isolates (16.8%) were erythromycin resistant and available for testing. Eighteen 

additional Q-D-nonsusceptible isolates were identified through ABCs (submitted from 1996 

to 2010) and included in the study. Q-D breakpoints were also determined using E-tests, 

following the manufacturer’s instructions.

Polymerase chain reaction amplification and sequencing

Polymerase chain reaction (PCR) amplification of ermT, ermA (subclass ermTR), ermB, 

mef, rplD (L4), rplV (L22), and the 23S rRNA genes (domain II and V) was carried out 

using previously described protocols.45,47,48,57 Screening for genes cfr, lsaC, and vgaA was 

also carried out, as previously described.31,39,41 PCR products were purified using ExoSAP-

IT (Affymetrix, Inc.) and cycle sequenced using the BigDye Terminator v3.1 chemistry (Life 

Technologies Corporation) according to the manufacturer’s protocol.2 Sequencing reactions 

were purified using a Sephadex-based method; briefly, sequencing reactions were transferred 

onto Sephadex G-50 columns prepacked into microtiter filter plates (Millipore) and then 

centrifuged at 750 g for 2 min onto clean 96-well plates. Purified reactions were analyzed on 

an ABI3130xl automated sequencer. The sequences obtained were compared to the TIGR4 

(NC003028) genome, and then screened against all whole genome shotgun sequences 

available in the NCBI database.

Newly determined nucleotide sequence data have been submitted to GenBank under 

accession numbers KM098099-KM098108.

Results

Serotype and antimicrobial resistance

Forty-eight different serotypes were represented among the macrolide-resistant isolates 

included in this study. The five most common serotypes associated with macrolide resistance 

were 19A (26.2%), 14 (14.5%), 6A (9.1%), 15A (6.0%), and 6B (5.4%). During 1999, 

before the introduction of PCV7, the seven serotypes included in the vaccine accounted for 

79.5% of macrolide-resistant invasive isolates; after PCV7 was introduced, this proportion 

decreased to 63.4% in 2002 ( p < 0.0001) and to 8.3% in 2007 (p < 0.0001). Among non-

PCV7 serotypes, the largest changes in proportion among macrolide-resistant invasive 
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isolates were observed in 19A (from 3.4% in 1999 to 42.3% in 2007, p < 0.0001) and 15A 

(from 0.3% to 12.5%, p < 0.0001), followed by 33F (from 0.3% to 7.3%, p < 0.0001) and 6C 

(from 0.7% to 5.9%, p < 0.0001).

Mechanisms of MLS resistance

The distribution of isolates positive for ermB and/or mef among PCV7 and non-PCV7 

serotype isolates is shown in Table 1. The dual ermB + mef genotype increased significantly 

among these isolates from 1999 to 2007 ( p < 0.0001), while the mef-only genotype went 

from being found in 80% of the resistant invasive isolates in 1999 to accounting for only half 

of the resistant isolates in 2007. No significant changes were observed in the proportion of 

ermB-only genotype.

Changes in the prevalence of these mechanisms of erythromycin resistance among invasive 

isolates were closely related to changes in serotype distribution (Fig. 1). The mef-only 

genotype decreased slightly in prevalence, but still remained the predominant mechanism 

among PCV7 serotype isolates across the years in the study. The ermB + mef genotype 

increased somewhat among PCV7 serotype isolates due to the relative number of 19F 

isolates (data not shown), but remained as a minor proportion. In contrast, among non-PCV7 

serotype isolates in our study, the proportion of mef-only isolates declined from 91.3% in 

1999 to 48.5% in 2007 ( p < 0.0001), while the proportion of ermB + mef isolates increased 

as a function of 19A emergence from 0.7% in 1999 to 31.3% in 2007 ( p < 0.0001). Most 

isolates positive for ermB + mef from 2007 were serotype 19A (85.5%). The proportion of 

ermB-only isolates also increased among non-PCV7 serotypes, but not significantly.

Thirty-seven macrolide-resistant isolates were negative for both ermB- and mef-mediated 

mechanisms and were therefore screened for the presence of ermA (subclass ermTR), cfr, 
lsaC, and vgaA genes, as well as changes (relative to TIGR4) in genes encoding L4 (rplD) 

and L22 (rplV), and in the 23S rRNA. Three isolates were positive for ermA (subclass 

ermTR) and 25 had changes in the 23S rRNA or the ribosomal proteins (L4 and L22). No 

changes were found in nine of the isolates. None of the isolates contained any of the other 

MLS resistance genes tested, and clindamycin resistance was not inducible in any of the 

clindamycin-susceptible strains (Table 2).

Of the 25 isolates with ribosomal changes, 18 isolates had an A to G substitution at position 

2061 (A2059 in Escherichia coli) in the 23S rRNA, 7 had substitutions or insertions in L4, 3 

of those with multiple changes, and 3 isolates had insertions in L22.

Since all 3 isolates with insertions in L22 were also resistant to Q-D, we screened an 

additional 18 Q-D nonsusceptible isolates from ABCs (submitted from 1996 to 2010). Six of 

them had insertions similar to those previously observed and one had a substitution in L22. 

Three isolates had insertions, and two isolates had substitutions in L4. Lastly, one isolate had 

a C-to-G change at position 2613 (C2611 in E. coli) and another had an A-to-C change at 

position 2060 (A2058 in E. coli) in the 23S rRNA. Incidentally, one of the isolates was 

positive for both ermB and mef, and one was positive for mef only. In three of these isolates, 

the potential mechanisms were not apparent (Table 3).
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Overall, we found a total of 28 changes in the 23S rRNA and the ribosomal proteins L4 and 

L22 (relative to TIGR4), 11 of which have never been reported (Table 4). In addition, we 

found four changes relative to TIGR4 that correspond to the natural variants of L4, L22, and 

23S rRNA and do not correlate with changes in macrolide susceptibility: an S20N 

substitution in L4, an I39T substitution in L22, plus a 683AA684 to CC substitution, and a 

U676C substitution in domain II of the 23S rRNA.

We also identified three isolates that were clindamycin susceptible in spite of carrying the 

ermB gene. They were checked by the D-zone disk diffusion test and broth microdilution, 

and resistance was not found to be inducible. The ermB structural gene was sequenced and 

no changes were found. This was also the case for one of the isolates carrying ermA 

(4336-05), where clindamycin resistance was not inducible, and no changes were found in 

the ermA structural gene sequence, suggesting a defect in gene expression.

Discussion

PCV7 implementation had a marked impact on the distributions of macrolide resistance 

determinants among invasive isolates in the United States, due to decreases in vaccine-

targeted strains and increases in certain nonvaccine serotype strains. Before the introduction 

of PCV7, the majority of mef-only isolates among the macrolide-resistant isolates in the 

study were associated with serotype 14 (64.4%), which was the most common serotype 

among all macrolide-resistant isolates in the study (44.5%). After the introduction of PCV7, 

the proportion of serotype 14 among the study isolates declined rapidly to 21.7% in 2002 

and to 2.2% by 2007, contributing to the decrease of the mef-only genotype among 

macrolide-resistant pneumococci from 80.2% in 1999 to only 51.3% in 2007. In contrast, the 

proportion of ermB + mef isolates increased from 0.7% in 1999 to 31.3% in 2007, mainly 

driven by the emergence of macrolide-resistant serotype 19A in the post-PCV7 period. 

Serotype 19A accounted for 3.4% and 42.3% of pneumococcal macrolide resistance in 1999 

and 2007, respectively. During 2007, 85.5% isolates positive for ermB + mef were of 

serotype 19A.

Population-based surveillance in the United States revealed that 82% of penicillin-resistant 

invasive serotype 19A isolates recovered during 2007 belonged to clonal complex 

CC320/27119A, and the majority of these were also resistant to macrolides (96%) and 

lincosamides (79%).3 It should be noted that CC320/271 includes the Taiwan19F-14 clone, 

which is the likely ancestral strain of this complex and also carries ermB and mef. 
Serotype19A and its associated high-level resistance has already decreased dramatically 

within ABCs surveillance areas following the introduction of the 13-valent pneumococcal 

vaccine (PCV13, Prevnar13; Wyeth Pharmaceuticals) in February of 2010 (unreported data), 

and is likely to continue to decrease, as also evidenced by early reports of decreased carriage 

of 19A and decreased rates of IPD caused by 19A.12,30,44 MLSB-type resistance within non-

PCV13 serotype 15A, seen here associated with ermB, modestly increased in the post-PCV7 

period due to the increase in multilocus sequence-type ST63.24 In the post-PCV13 period, 

these and other nonvaccine serotype-resistant strains could potentially continue to emerge, 

possibly benefitting from the removal of PCV13 serotypes from the carriage reservoir.
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Aside from the changes in serotype and the ermB- and/or mef-mediated mechanisms, we 

also identified potentially important resistance-associated changes within the ribosomal 

proteins L4 and L22 and the 23S rRNA. Eleven of the 28 changes identified have not been 

previously described and an additional 2 have been reported in other bacterial species, but 

not in S. pneumoniae.

Seven different changes were found in a highly conserved region of L4 (Table 

4), 63KPWRQKGTGRAR74, including three previously unreported insertions (ranging from 

3 to 12 bp) associated with macrolide and/or Q-D resistance, and one insertion (KG after 

position 69) previously reported to confer resistance to azithromycin, but not erythromycin 

nor Q-D, in Streptococcus pyogenes.37 Similar insertions have been reported in S. 
pneumoniae and other gram-positive species in association with resistance to macrolides and 

streptogramins.23 We also found three substitutions, including a 69GTG71 to TPS 

substitution that has been previously shown to confer resistance to macrolides, and 

streptogramin B,17,50,54 and to telithromycin as well when combined with the presence of 

ermB55; plus two substitutions, Q67R and R72G in a Q-D, which were described in a 

previous report.14 Although previous linezolid nonsusceptible clinical S. pneumoniae 
isolates have only been associated with deletions in L4,17,55 similar substitutions have been 

reported in laboratory-derived mutants of pneumococcal strains22 and clinical isolates of 

other species.36 In addition, a Ser-to-Leu substitution was found at position 112, but only in 

combination with other changes.

In L22, we found a total of 10 changes in conserved regions of the C-terminal sequence 

(Table 4), including 2 substitutions and 8 insertions (ranging from 15 to 27 bp), associated 

with macrolide and Q-D resistance. Five of the insertions were in the 

region 102KRTAHITVA110; three have been previously reported,6,17,29,40 and two newly 

observed insertions are very similar as well (KRTAHIT and VRTAHIT). The three 

remaining insertions were in a region where an insertion has been previously reported in 

macrolide-resistant S. pneumoniae isolates (85PMKRFRPR92).43 Deletions have also been 

reported in this region of the Staphylococcus aureus L22 protein in association with Q-D 

resistance.38 The two substitutions T85P and R103C have not been previously reported.

Mutations in primary rRNA sequence have been found to play an important role in antibiotic 

resistance and there is growing evidence pointing to their role in MLS resistance.13,52 In this 

study, three potentially resistance-conferring mutations were found in the peptidyltransferase 

loop of the 23S rRNA of 20 invasive isolates. Position 2611 (E. coli numbering) is important 

in maintaining the stem preceding the single-stranded portion of the peptidyltransferase loop 

containing positions A2058 and A2059,5,35 and a C-to-G substitution at this position has 

been previously reported to confer resistance to macrolides and Q-D16; this substitution was 

observed in one of our isolates with the same phenotype (7799-07). Another isolate in our 

study carried an A2060C (A2058 in E. coli) substitution that has not been previously 

reported in S. pneumoniae, but has been reported in Mycobacterium intracellulare,52 

Mycoplasma pneumoniae,42 and C. jejuni,33 in association with an MLSB phenotype. The 

isolate in our study was found to be resistant to erythromycin and clindamycin and 

nonsusceptible to Q-D; the elevated Q-D MIC (2 μg/ml) is likely explained by resistance to 

the streptogramin B unit (quinupristin) of Q-D. In addition, 18 isolates carried an A2061G 
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(A2059 in E. coli) substitution that has been frequently reported in association with an ML, 

MLSB, or MSB phenotype,16,49,50 which are the same phenotypes we observed. It has been 

previously suggested that the different phenotypes and levels of resistance associated with 

this substitution depend on the number of 23S rRNA alleles that are mutated.16 However, 

another study on a large population of isolates argued against this and instead suggested that 

differential expression due to environmental pressure may be the explanation for these 

phenomena.17 Since we did not individually amplify the four alleles present in S. 
pneumoniae nor measured their expression, we are unable to draw conclusions either way, 

but believe that both possibilities merit further investigation.

Future plans include performing transformation assays to determine the role of the 13 

changes found in this study, as well as further characterization by whole genome sequencing 

of the isolates where the mechanism of resistance remains unexplained.
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FIG. 1. 
Changes in distribution of the two major macrolide resistance determinants among PCV7 

versus non-PCV7 serotypes.
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Table 4

Summary of Alterations Found in L4, L22, and 23s rRNA, Among ERY-Resistant (erm - /mef -, n = 37) and 

Q/D Nonsusceptible Isolates (n = 18)

Gene Mutationa Observed phenotypeb Reported phenotypeb Reference

rplD/L4 E13Q, E30Q, V88I, G98A, A128S, S130E See notes c and d No resistance 56

E30K Q-D M 54

S112L See note d This study

Q67R + R72G Q-D LZD LZD 14

69GTG71 to TPS MSB ML, M, MSB 17, 50, 56

63KPWRQKTGTGRAR74 M This study

63KPWRQKGKGTGRAR74 Q-D ERY-I AZI-R 37 e

63KPWRQKGSQKGTGRAR74 M Q-D This study

63KPWRPWRQKGTGRAR74 Q-D This study

rplV/L22 R103C M Q-D This study

102KRTAHITRTAHIVA110 M Q-D M Q-D 29

102KRTAHITRTAHITVA110 M Q-D ML, M, M Q-D 17, 40

102KRTAHITKRTAHIVA110 M Q-D M Q-D 6

102KRTAHITKRTAHITVA110 M Q-D This study

102KRTAHITVRTAHITVA110 M Q-D This study

T85P See note 4 This study

85PMKRFRPPMKRFRPRAK94 M Q-D This study

85TMKRFRPRASFRPRAK94 M Q-D This study

76SEAFANEGPTIAFANEGPTM86 M Q-D This study

23s d. V A2061G (2059 in Escherichia coli) M, MLSB ML, MLSB, MSB 16, 49, 50, 54

C2613G (2611 in E. coli) M Q-D M, M Q-D 16, 49, 52

A2060C (2058 in E. coli) MLSB ML, M 33, 42, 52e

a
Insertions are underlined.

b
“Observed phenotype” refers to this study, while “Reported phenotype” refers to phenotypes observed in previous reports.

c
These changes were found in combination with the 69GTG71 to TPS substitution.

d
Only found in combination with other changes, its role in resistance is unclear.

e
These reports pertain to other bacterial species. Our study is the first to report these changes in Streptococcus pneumoniae.

AZI, azithromycin; ERY, erythromycin; LZD, linezolid; L, lincosamides; M, macrolides; SB, streptogramin B; Q-D, quinupristin–dalfopristin 

(Synercid).
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